
Isearch Internals

Brent Baccala
baccala@freesoft.org

August, 2001

1 Introduction

Isearch (http://www.etymon.com/Isearch/) is a full-text searching system published under an open source
license. It indexes a collection of documents to facilitaterapid searches, for example to find all instances of the
word ethernetin a gigabyte of data spread over a thousand files. This paper describes the internals of Isearch
v1.47, focusing mainly on the structure of the index files on disk. Other documents in the Isearch distribution,
particularly theIsearchTutorial, discuss the use of Isearch’s programs from a user’s perspective.

The document collection is a set of ordinary files, residing somewhere on the system, and must be readable
during searches, since the Isearch index only stores pointers to the words, not the words themselves. Each
document has an associateddocument type, indicating the structure of the document and implying how the
file should be parsed into records and fields. Isearch comes with over two dozen document types defined,
and provides an extension API to allow new document types to be coded in C and compiled into the Isearch
programs.

The collection is modeled as a set of records, each corresponding to a range of bytes within a single file. The
results of a search operation are sets of records. In the simplest case, each record corresponds to a single file
on disk, but other possibilities exist. For example, theONELINEdocument type indexes each line of a file as
independent records. Each line thus appears independentlyin the result sets. TheMAILFOLDERdocument type
parses standard UNIX mail folders and treats each message asa record, producing search results containing
individual email messages.

The record can be further parsed intofields, for example the title of an HTML document, or the sender of an
email message. Fielded search operators allow search termsto be restricted to individual fields. For example,
searching forFrom/baccala in a MAILFOLDERdocument matches only those records containingbaccala in
theFrom: header. However, the result set would still indicate the entire email message, since fields are used
to restrict search operations, and records are the fundamental entity returned from the searches.

The Isearch index itself consists of a set of files on disk, identified by a common prefix, and using a set of stan-
dard file extensions. All of the Isearch utilities accept a-d option, which specifies a UNIX path name to reach
the index files. No file actually exists by the name specified with -d ; the software appends the various file ex-
tensions to find individual files. For example, specifying-d index/topics indicates thatindex/topics.mdt
is the Master Document Table,index/topics.dbi is the Database Info file, etc.

File Extension Description
.dbi Database Info file
.dfd Data Field Definitions Table
.inx Index
.inx. num Index numbernum
.mdt Master Document Table
.mdk MDT Key Index
.mdg MDT GP Index
.sta Database State file
. num Data field filenum

Figure 1: Isearch file extensions

2 Database Info file

The dbi file is a small, formatted ASCII file containing overall information about the index. It’s structure
is simple — each key or value occupies its own line, begun witha “+”, and the indentation level indicates
the line’s position in the hierarchy. The Isearch code refers to it as a “registry”, and it’s structure is clearly
patterned after the Windows registry. Here’s a sampledbi file:

+DbInfo
+VersionNumber

+1.47d
+MagicNumber

+7
+DocType

+
+DocTypeOptions

+
+BigEndian

+0

The most important entries areVersionNumber , indicating the version of Isearch that generated the index;
MagicNumber , indicating the revision of the database format, and thus which versions of the program can read
this database;BigEndian , indicating the byte ordering in the 32-bit integer values;andDocType , the default
document type to be used if none is specified on theIindex command line.

3 Master Document Table

The Master Document Table (MDT) contains an entry for every record in the document collection. Stored in
a file with extension.mdt , the MDT entries currently (Isearch v1.47) are 1380-byte C structures, as shown in
Figures 2 and 3.

Isearch indexes documents using a 32-bit index, called a global position (GP), which maps to character posi-
tions in the files. Each record maps to exactly the same numberof GPs as there are byte in the record, and no
overlap is allowed between two record’s GP ranges. To resolve a GP, you look it up in the Master Document
Table (MDT) which lists initial and final GPs (GlobalFileStartandGlobalFileEnd) for each record in the
collection. After finding the MDT entry, subtract the record’s GlobalFileStartto get a character offset in the
record. The MDT entry will also specify aLocalRecordStart— the character offset of the record in the file.

typedef UINT4 GPTYPE;

const INT DocumentKeySize = 16;
const INT DocumentTypeSize = 64;
const INT DocFileNameSize = 1024;

class MDTREC {
CHR Key[DocumentKeySize];
CHR DocumentType[DocumentTypeSize];
CHR PathName[DocPathNameSize];
CHR FileName[DocFileNameSize];
GPTYPE GlobalFileStart;
GPTYPE GlobalFileEnd;
GPTYPE LocalRecordStart;
GPTYPE LocalRecordEnd;
CHR Deleted;

};

Figure 2: Record structure of the.mdt file

So, adding theLocalRecordStartto the character offset in the record gives the character offset in the file,
which can simply be opened and read to find the word.

For example, assumeindex.htm is 400 bytes long and maps to global indices 100001-100400. Then global
index 100200 corresponds to the 200th byte inindex.htm

This snippit of Perl will read and unpack entry$num from an MDT:

if ($DBI{BigEndian}) {
$pack_template = ’Z16Z64Z255Z1024xNNNNCxxx’;

} else {
$pack_template = ’Z16Z64Z255Z1024xVVVVCxxx’;

}

seek(MDT, 1380 * $num, 0);
read(MDT, $mdtentry, 1380);

my ($dockey, $doctype, $pathname, $filename,
$gfstart, $gfend, $lrstart, $lrend,
$deleted) = unpack($pack_template, $mdtentry);

Since the MDT can become fairly large, searching it quickly can be a problem. To speed searches, the.mdt
file has two auxiliary files associated with it, each containing the same number of records as MDT, but with
just a few fields, and sorted. The GP index (extension.mdg) is sorted by global position, and the key index
(extension.mdk) is sorted by document key. Because they are relatively small, the .mdg and .mdk files are
typically read into memory; further disk accesses needed only to read the full entries from the.mdt file. Figure
4 shows the structure of the key records.

For example, Figure 5 shows a directory listing of these filesfor one of my databases. The document collection
contains 2926 files, so each file contains 2926 records, of 12 bytes each (MDG), 20 bytes each (MDK) and
1380 bytes each (MDT). Finding the MDT entry corresponding to a given GP (a fairly common operation
during searches) requires a binary search on the in-memory copy of the.mdg file, which yields theIndexof
the entry in the.mdt file.

Field Name Description

Key Key number of the document. Each document has a unique decimal key, used to uniquely identify
it, during delete requests for example.

DocumentType One of the defined document types

PathName UNIX-style pathname leading to document file. Usually absolute (with a leading slash), but can be
relative (without one).

FileName Filename of the document, without any leading path.

GlobalFileStart
GlobalFileEnd

The range of global positions (see Introduction) referred to by this MDT entry. The length of the
record (usually the length of the file) isGlobalFileEnd�GlobalFileStart

�
1

LocalRecordStart
LocalRecordEnd

LocalRecordStart andLocalRecordEnd indicate the limits of the record, measuring in bytes from
the start of the file, the first byte counted 0.LocalRecordEnd� LocalRecordStart

�
1 is the length

of the record in bytes, and always equalsGlobalFileEnd�GlobalFileStart
�

1

Deleted A single byte value, non-zero if the document has been deleted from the collection.

Figure 3: Fields in the Master Document Table

class GPREC {
public:

GPTYPE GpStart;
GPTYPE GpEnd;
GPTYPE Index;

};

class KEYREC {
public:

CHR Key[DocumentKeySize];
GPTYPE Index;

};

Figure 4: Record structure of the.mdg and.mdk files

-rw-rw-r-- 1 baccala baccala 43656 Jun 27 17:09 htmlrfcs.md g
-rw-rw-r-- 1 baccala baccala 72760 Jun 27 17:09 htmlrfcs.md k
-rw-rw-r-- 1 baccala baccala 5020440 Jun 27 17:09 htmlrfcs. mdt

Figure 5: UNIX directory listing of MDT and related files

4 Index Files

Isearch indices are contained in one or more index files. If a single index file is present, its extension is simply
.inx . Multiple index files are indicated using a.num file, which contains a single ASCII decimal number, the
number of index files. Each of these index files has extension.inx. , followed by the number of the file. For
example, if the.num file contains3, then the three index files have extensions.inx.1 , .inx.2 , and.inx.3 .
If multiple index files are present, then any.inx file that may be present is ignored.

Each index file is nothing more than a list of 32-bit global positions, stored using the byte ordering indicated
by the DBI file. Each GP points to the first byte of a word in the document collection, and the GPs in each
index file are sorted by the ascending alphabetical order of their corresponding words. The commandod -t
’d4’ can be used to conveniently print the contents of an index file. For example, here’s a simple one line
document, with each GP marked, and its corresponding 24 byteindex file:

This is my web page
ˆ ˆ ˆ ˆ ˆ
0 5 8 11 15

Index file: 5 8 15 0 11

Each index file is sorted independently of the others, and anysearch is performed on all the index files, with
the result sets or’ed together. This allows documents to be incrementally added to the collection, simply by
creating another index file. Of course, the more index files there are, the less efficient the searches become.
Isearch provides an optimization function to combine multiple index files together, using a merge sort, with
the .inx file (remember, it’s ignored if there are multiple index files) as output. The various index files are
scanned from beginning to end, taking always the smallest term and writing it to the output. This continues
until all the index files are exhausted. Then they are deleted, along with the.num file, and Isearch begins using
the newly created.inx file.

5 Search Algorithm

Isearch finds words using binary search on the index file(s). Some of the items in the search index may be
invalid, if they point to deleted data, and are thus unable tobe used in a comparison operation. Thus, Isearch’s
binary search algorithm has been modified to deal with the possibility of invalid entries.

The primitive search operation isMatchMid , which is passed a range[low, high] and the search term to
compare against.MatchMid , in its simplest form, takes the term at the midpoint of[low, high] , compares
it to the search term, and returns equal, less than, or greater than. Since each entry in the index is a global
position, finding the corresponding term requires a binary search on the MDT to find the file corresponding to
the GP, opening the file, seeking to the location, reading theterm, then comparing it to the search term. If there
are no invalid terms present, thenMatchMid simply performs a comparison on the midpoint of[low, high] .

However,MatchMid also must handle an invalid midpoint, in which case it does linear searches away from
the midpoint, looking for the first valid term in both directions. In the general case,MatchMid returns a range,
[midl, midr] , the endpoints being valid terms, and everything between them invalid. As a special case, the
linear search may reach all the way to the originallow or high limit without finding a valid term, in which
case it terminates and returns a special marker to indicate this case.

To search for a term, we binary search on a range[low, high] , initially the entire range of the index file.
MatchMid is called and returns a range[midl, midr] near the midpoint of[low, high] .

Figure 6: MatchMid

Consider the following cases:

� If eithermidl or midr matched equal to the search term, the binary search succeeded and we immediately
return

� If midl is greater than the search term, set thehigh limit of the search tomidl-1 and repeat, sincemidr
is always greater thanmidl and therefore the entire[midl, midr] range is greater than the search term

� If midr is less than the search term, set the newlow limit of the search tomidr+1 and repeat sincemidl
is always less thanmidr and therefore the entire[midl, midr] range is less than the search term

� Otherwise, return an empty result.midl must be either less than the search term, or have reached the
lower search limit finding nothing but invalid terms, since both the equality and greater than cases have
already been addressed formidl . Likewise,midr must be either greater than the search term, or have
reached the upper search limit, since its equality and less than cases have already been addressed. So,
midl is less than the search term (or limit reached), andmidr is greater than the search term (or limit
reached), so any hits must lie in the range betweenmidl andmidr , which contains nothing but invalid
entries, so there are no valid results

Repeat the binary search algorithm until either the first or last case triggers an immediate return, or untilhigh
> low , in which case return an empty result. Since the iteration steps each setlow (or high) to one more
(less) thanmidr (midl), the algorithm always makes forward progress, untillow = high and the last step
incrementslow pasthigh , or decrementshigh pastlow .

Isearch needs to find all the matching terms, so once a hit is found, two additional binary searches are per-
formed to bracket the range of matching terms, using the location of the hit, and the[low, high] values
from the last iteration. First, a binary search is performedon [low, hit] , looking for the beginning of the
matching range, then another binary search is performed on[hit, high] , looking for the end of the matching
range.

Consider the search for the beginning of the range. CallMatchMid on [low, hit] to get[midl, midr] , then
apply the following cases. The upper limit of our search (hit) compares equal to the search term, and we’ll
maintain this as an invariant. Also, we’ll never get a comparison result greater than our search term, only less
than or equal.

� If midl matched equal to the search term, sethit to midl and repeat
� If midr matched less than the search term, setlow to midr+1 and repeat
� Now, midl must be either less than the search term, or have reached the low limit finding nothing but

invalid entries, andmidr must be equal to the search term, sincehit is always valid, somidr can’t have
reached the search limit. Furthermore, everything betweenmidl andmidr is invalid, thereforemidr is
the lowest matching entry, so return it as the result of our search

Repeat untillow = hit-1 . The algorithm will make forward progress until this point,sincemidl will always
be less thanhit until this point, where it may stall (ifmidl = midr = hit). Comparelow to the search term.
If it is equal, returnlow as the result, otherwise returnhit . A similar algorithm is used to find the upper limit
of the search range.

Performance. Since the algorithm reverts to linear search when confronted with invalid entries, its perfor-
mance depends strongly on the density of such entries. In theworst case scenario, when the entire search array
is invalid, the algorithm will require linear time to returnan empty result. On the other hand, in the degen-
erate case with no invalid entries, the algorithm acts as a traditional binary search and requireslog(N) time.
Clearly, this algorithm is suited only for indices with few deleted entries. Isearch’s optimization function,
which eliminates deleted entries, should be used as often aspossible when deleted entries may be present.

6 Fields

Fields, as mentioned above, are byte ranges within records.Normally, a search term will match anywhere
within a record, but can be limited to a specific field. Each field has an entry in the Data Field Definitions
Table (.dfd file), which is a small ASCII file listing field names, an associated file number, and one or more
attributes, identified by OIDs.

Each field has a file number associated with it, and this file number is used as an extension (. num) to name
the field’s associated Data Field file. These files contain pairs of 32-bit GPs — the starting and ending GPs
of each field. The GP pairs are sorted in ascending order, allowing a binary search to determine if any GP is
contained in the field in question. A fielded search thus begins with a normal search, which returns a list of
GPs, which are each checked against the Data Field file and rejected unless within one of its ranges.

Numeric fields are supported, and are handled specially. Thenumbers are parsed by the document type handler
and stored, each one, as a GP/double pair in the Data Field file. This special format of Data Field file is sorted
by the double (not by the GP), allowing binary searches for numbers directly on the Data Field file without
using the standard index files at all, though the numbers are also indexed there, in the conventional manner,
for non-fielded searches. Dates, for example, are convertedto numbers and stored in this fashion.

7 Parsing and Scoring

When a search query is presented to Isearch, it first scans thequery into tokens. Tokens are single words,
separated by whitespace, with several special character sequences that parse into unique tokens — the two
parenthesis,&&, &! , and|| . Double-quoted strings are grouped as single tokens without regard for whitespace
or special characters, then the double quotes are stripped away.

Next, the query is parsed according to one of several grammars (standard, and, infix, and RPN) selected by
command line options. In a standard query, every token is regarded as a search term, with the results logically
or-ed together. Anandquery is almost the same, but the result sets from each term are logically and-ed. Infix
notation is converted into RPN, and both use a set of operators to construct more complex queries —ANDor &&
(logical and),ORor || (logical or),ANDNOTor &! (logical andnot),NEAR, and the parenthesis for grouping. I
hope logicalandandor are self-explanatory. Logicalandnotis anandwith the following search term inverted,
but since inverted terms tend to generate enormous result sets, logicalnot isn’t provided as a primitive.NEAR
matches its two arguments within 50 characters of each other.

Each search term within the query is parsed like(.+)(*)?(/.+)?(:-?[0-9]+)? , i.e, the search term it-
self, followed by an optional asterisk to indicate a wildcard, followed by an optional slash and field name
to restrict the search, followed by an optional colon and numeric weight (possibly negative). For example,
ethernet*/title:3 searches for any word beginning withethernet in the title field, weighing this term
three times more than normal. If double quotes were used, an entire phrase can be submitted as a search term.

For each search term, the search algorithm described above is used to find a range of index entries that match

the search term in each index file. Each GP in the range(s) is read, possibly rejected if not present in a required
field (which would require the GP to searched for in the properData Field file), and looked up in the MDT
to find its matching document. The hit count for that documentis incremented. There is no need to open the
document files on disk at this point, but each index entry triggers a binary search on the MDT, and possibly
the Data Field file, if a field was specified. This is the most time consuming part of a search.

Next, the hit counts are normalized by summing the squares ofthe hit counts for each document, and dividing
through by the square root of the sum. The score is multipliedby the weighting factor associated with this
term in the search query, default 1. This produces a set of document scores for a single term.

scoren � weight
hitsn�
∑hits2

The full search query is now constructed from the weighed, normalized result sets from each term. A logical
andproduces a result set containing only documents that appeared in both of its input result sets; the scores
from the two input sets are added together to get the scores onthe output result set. A logicalor produces the
union of documents in its input result sets; again the scoresare added together for any document appearing in
both sets. The logicalandnotremoves from the result set of its first argument any documents in the result set
of it’s second argument; the scores of the remaining documents are unchanged. ForNEAR, the scores from the
left-hand result set are discarded; the scores from the right-hand result set are used, multiplied by the number
of hits within 50 characters of each other.

Finally, having produced a result set for the entire search query, the document list is sorted into descending
order of scores, the final scores are normalized so that the highest score is 100, and the list is presented to the
user.

