
The Hoffman Reference Guide

Brent Baccala

February 24, 2009

Hoffman is a program to solve chess endgames using retrograde analysis, which is much different from conventional
computer chess programs. Retrograde analysis is only useful in the endgame, runs very slowly, and produces enormous
amounts of data. Its great advantage lies in its ability to completely solve the endgame. In a very real sense, a retrograde
engine has no “move horizon” like a conventional chess engine. It seeseverything. For those not up on Americana, the
program is named after Trevor Hoffman, an All Star baseball pitcher whospecializes in “closing” games. It was written
specifically for The World vs. Arno Nickel game.

Hoffman uses XML extensively both for configuring its operation and forlabeling the resulting tablebases. In fact, a
completed Hoffman tablebase (typically in an.htb file) is just agzip-ed file that contains an XML prefix followed
by binary tablebase data (in a format specified by the XML). Basically, to operate Hoffman, you write an XML file that
specifies the analysis you want done, then feed it to the program. As output, it produces a modified version of the XML
input that includes binary tablebase data appended at the end.

1 Hoffman and Pawngen

A single Hoffman tablebase contains a fixed number and type of pieces, which can be placed onto different squares of
the chessboard. For example, a “kqkp” tablebase typically contains all possible chess positions that can be formed using
a white king and queen as well as a black king and pawn. It doesnot contain any positions that contain just a black
king without a black pawn. Captures, promotions, and movements outside of apiece’s allowed squares are handled by
consulting other tablebases, calledfuturebases, which must already exist. It is also possible to handle such moves without
futurebases bypruning them.

Creating and managing an interlinked set of tablebase control files can be quite daunting. Hoffman includes an auxiliary
program called “pawngen” to aid in this process. Pawngen takes an Hoffman-format XML control file as input, considers
all possible tablebases that can result, and outputs a directory full of correctly interlinked XML control files, ready
for Hoffman, along with a UNIX standard makefile to construct them in the proper order. Pawngen currently accepts
only a subset of Hoffman’s XML syntax — nolocation attributes are allowed on any non-pawns, and pawns must
havelocation attributes specifying a specific starting square followed by a plus sign. Pawngen does understand
futurebase andprune elements, and will use them to truncate its analysis and thus limit the number of generated
control files. Also, pawgen understands thepawngen-condition attribute onprune elements, which can be used
to prune more selectively than otherwise possible.

Put simply, pawngen considers individual pawn formations and pawn moves (including captures and promotions), while
allowing the other pieces to move freely around the board. Hoffman, on the other hand, can only consider one set of
pieces at a time, requiring futurebases to handle captures and promotions.Furthermore, for Hoffman to compute the
complicated changes in pawn formation that can result from various captures would require fairly unrestricted pawn
locations that would produce prohibitively large tablebases.

Unlike Hoffman, which is written in C, pawngen is a Perl script, so you must have Perl installed (along with its
XML::LibXML module) in order to use it. Calling Hoffman in the correct order on a directorycontaining hundreds
of control files is a job for “make”. Both Perl and make are fairly standardon Linux and other UNIX variants. On
Microsoft systems, I’ve used the cygwin distribution (which includes both programs) successfully.

2 Parallel Processing with Hoffman

A Hoffman analysis can be quite compute-intensive. The program can be compiled to use POSIX threads (if available),
with the number of threads specified at run-time using the-p option. The program is also designed to use multiple
computers in parallel, all working simultaneously on an analysis. This is accomplished by breaking the analysis up into
smaller pieces, each with its own XML configuration file. The primary supportprovided by the program is the ability
to use URLs instead of filenames to reference tablebases, allowing tablebases to be stored on a server accessable over a
network. A basic Perl CGI script (hoffman.cgi) is provided which, when installed on a web server and supplied with
a directory full of Hoffman XML files, will hand them out in the proper order to Hoffman clients for processing.

3 Propagation tables

A Hoffman analysis can also be quite space-intensive. Since its memory utilization pattern is basically random, Hoffman
will begin to swap dramatically and suffer a disastrous drop in performanceonce its working set size exceeds the ma-
chine’s available memory. To alleviate this, the program can be operated in a mode where it fills a series ofpropagation
tables, writing each one out to disk when full, then reads them back in sequentially during the next pass. Although less
efficient than when the working set can be contained in memory, propagation tables allow the program to build tablebases
of essentially unlimited size with no swapping and reasonable CPU utilization. Thismode is activated at run-time by
specifying the size of the propagation tables (in MB) with the-P switch.

Note: If you’re using proptables, performance will be abysmal unless you specify amodulus attribute to theindex
element.

4 XML Syntax

The root XML element in a Hoffman tablebase is always<tablebase>. Its only attribute (offset) is added by
the program, should not be supplied by the user, and indicates a hexadecimal byte-offset into the file where the binary
tablebase data begins.

Within a <tablebase> the following elements may occur in the listed order (deprecated elements and attributes are
not documented):

4.1 <prune-enable color="white|black" type="concede|discard"/>

Specifies which kinds of pruning elements will be allowed in this tablebase and itsfuturebases. Both attributes are
required.concede means wins may be conceded to the named color;discard means moves by the named color may
be discarded. At most oneprune-enable can be specified for each color. Noprune-enable element is required,
however, noprune elements are allowed without one and no futurebases may possess additional prune-enable
elements beyond those specified for the current tablebase.

4.2 <index type="naive|naive2|simple|compact|no-en-passant"
symmetry="1|2|2-way|4|8|8-way" modulus="auto|integer"/>

The<index> element specifies the algorithm that will be used to compute the index numbers in the tablebase; i.e, the
algorithm that will convert board positions into tablebase offsets and vice versa.

naive uses26n+1 indices to store positions forn pieces. It assigns a single bit for the side-to-move flag, then assigns
6 bits to each piece, which is used to encode a number from 0 to 63, indicating the piece’s position on the board.

naive2 Differs fromnaive in its handling of multiple identical pieces, which it stores as a base and an offset, thus
saving a single bit. Currently, only pairs of identical pieces are handled; afatal error will result if there are more
than two identical pieces.

simple Like naive, but only assigns numbers to squares that are legal for a particular piece. Slower to compute than
naive, but more compact for tablebases with lots of movement restrictions on the pieces.

compact A combination of the delta encoding used for identical pieces innaive2, the encoding of restricted pieces
used insimple, plus a paired encoding of the kings so they can never be adjacent.

no-en-passant An enhancement ofcompact that uses the paired encoding scheme for pawns restricted to the
same file. Since they can never pass each other, we can encode them as ifthey were an identical pair, then assign
their colors in the same order they were originally specified. En passant significantly complicates this and can not
be handled with this scheme.

The optionalsymmetry attribute can be used to encode multiple positions using a single entry, but its utility depends
upon the exact analysis being done. A tablebase with no pawns and no movement restrictions can be encoded with
8-way (alias8) symmetry, since the board can be rotated about a horizontal, vertical, or diagonal axis without affecting
the behavior of the pieces. A tablebase with pawns can utilize at most2-way (alias2) symmetry, since only a reflection
about a vertical axis preserves piece behavior. A tablebase with restrictions on the positions of the pieces (say, frozen
pawns) can not use any symmetry at all (1). Not all symmetries are compatible will all index types; for example, 8-way
symmetry can not be used withnaive or naive2 index types.Default: no symmetry

The optionalmodulus attribute, which if specified should be eitherauto or a prime number (the program complains
if it’s composite), indicates that the computed index should be inverted in a finite field (modulo the specified number)
to obtain the actual index. While time consuming, this step has the effect of shuffling the indices in a pseudo-random
fashion, and should be used if proptables are in use in order to optimize the operation of the library sort. This also
produces larger tablebases, since a pseudo-random distribution of mating positions impedes the operation of thegzip
compression algorithm.auto simply rounds the highest index up to the next prime number; there really is no reason
anymore to specify a specific prime.Default: no inversion

4.3 <format> ... </format>

This optional element specifies the format of the tablebase entries. It has no attributes, and must contain exactly one of
the following elements:

<dtm bits="8|16"/> specifies adistance to mate metric occupying either one or two bytes. Zero is used for draws,
-1 is used for positions where the moving side is checkmated, and 1 is used for positions where the moving side can
capture the opposing king, so a one byte dtm can record mate-in distances up to 126. A two byte dtm has no such
(practical) limitation.

<basic/> specifies abitbase where two bits are used for each position, and no distance information is stored — only
an indication of the ultimate outcome (win, lose, or draw). Such a format is more compact and requires less time to
generate, but requires more effort to use, since care must be taken to avoid loops when following winning lines.

<flag type="white-wins|white-draws"/> specifies abitbase where only a single bit is used for each posi-
tion.

Default: 8-bit DTM.

4.4 <piece color="white|black" type="king|queen|rook|bishop|knight|pawn"
location="string"/>

Multiple piece elements are used to specify the chess pieces present in the tablebase.color andtype are required
and should be obvious. The ordering ofpiece elements is significant in that it directly affects the index algorithm, but
there is no user-visible effect of the ordering.

The optionallocation attribute restricts the board positions available to this piece. It should be a list of squares, in
algebraic notation, on which the piece is to be allowed. A single square resultsin a completely frozen piece. In addition,
pawns may use an additional syntax consisting of a single starting square followed by a plus sign, indicating that the
pawn may move forward as far as possible. This can be used, for example, to locate a black pawn on"a7+ and a white
pawn on"a2+", indicating that both can move forward, but they can not “pass” each other.

4.5 <futurebase filename="string" url="string" colors="invert"/>

One or more futurebases may be specified with this element. Either afilename or aurl may be specified (not both)
to locate a futurebase, which must be another Hoffman tablebase. It must be related to the current tablebase in one of the
following ways:

It has exactly the same piece configuration as the current tablebase, andcorresponds to movement by one of the restricted
pieces, i.e, the current tablebase has a white pawn frozen one4 and the futurebase has a white pawn frozen one5.

It has exactly the same piece configuration as the current tablebase except that a single piece is missing, i.e, a capture
occurred.

It has exactly the same piece configuration as the current tablebase except that a single pawn has been replaced with a
knight, bishop, rook or queen, i.e, a pawn promoted.

It has exactly the same piece configuration as the current tablebase except that a single pawn has been replaced with a
knight, bishop, rook or queen, and a single non-pawn of the opposite color has been removed, i.e, a pawn captured
and promoted in the same move.

The optioncolors="invert" attribute may be specified to indicate that the piece colors of the futurebase should be
inverted as it is processed. This precludes the need to calculate, say, a tablebase with a white queen and a black rook
as well as a tablebase with a black queen and a white rook. The first may be used (with this option) as a futurebase to
calculate a tablebase with two white rooks and a black queen.

Note: Any futurebaseprune-enable elements must be a subset of the current tablebase’sprune-enable elements.

Note: The onlyurl scheme currently supported for this element isftp.

4.6 <prune color="white|black" move="string" type="concede|discard"
pawngen-condition="perl-expression"/>

Futuremoves not handled by specifying futurebases must be pruned using one or more of these elements, or an error
will result. All three attributes are required. Themove is specified using regular expression syntax to match a move
in a subset of standard algebraic notation. All of the following strings are examples of legalmove strings in aprune
element:Pe5, P=Q, RxQ, PxR=Q. The following regular expressions would all matchKd4: Kd?, K?4, K[a-d]4, K*.
Thetype attribute specifies what should be done with matching moves: treated as wins for the moving side (concede),
or completely ignored (discard). If multiple prune elements match a particular move, it is a warning if they have the
sametype, a fatal error if theirtypes differ.

A single prune element may be specified withmove="stalemate" andtype="concede". In this case, the
color attribute indicates to which side stalemates should be conceded as wins.

The optionalpawngen-condition attribute is not allowed directly by Hoffman, but can be present on controlfiles
input to pawngen. It specifies a Perl expression to be tested on each position considered by pawngen — i.e, every
distinct pawn formation with an associated set of non-pawn pieces. The prune statement will be included in the result-
ing Hoffman control file only if the Perl expression evaluates true. The Perl expression is evaluated in the following
context:@white pieces is an array of one-character strings listing the non-pawn white pieces, i.e,("K", "Q");
@white pawns is an array of two-character strings listing the board squares of the white pawns, i.e,("a4", "c6");
and likewise for@black pieces and@black pawns. This context may change slightly in future releases.

Note: If a prune element is specified for a futuremove handled by a futurebase, then the futurebase takes precedence.
However, this case is handled by tracking every futuremove in every position, so it is possible to specify futurebases that
handle a subset of the possible futuremoves, then useprune elements to handle the rest by default.

Note: prune elements are only allowed if they match aprune-enable element. If noprune-enable elements
were specified, then noprune elements will be permitted.

4.7 <generation-controls> ... </generation-controls>

This optional element has no attributes and contains one or more of the following sub-elements, in no particular order:

4.7.1 <output filename="string" url="string"/>

At most a singleoutput element should be used, with either afilename or aurl (but not both), to specify where
the finished tablebase should be written.

Note: The onlyurl scheme currently supported for this element isftp.

4.7.2 <completion-report url="string"/>
<error-report url="string"/>

Optionally, the tablebase’s XML prefix (without the tablebase data) can be written to a URL upon either a successful or
error termination of the program. This capability (along with the ability to be read and write tablebase URLs) is intended
to aid the construction of Hoffman tablebases using a distributed cluster.

Note: In the event of an error termination, every attempt will be made to add<error> elements to the XML indicating
the cause of the problem.

Note: The onlyurl scheme currently supported for these elements ishttp.

4.7.3 <entries-format> ... </entries-format>

This optional element controls the internal format used to store a tablebase during its construction. It contains a number
of entities, each corresponding to a structure field, all of which admit at least the attributesbits andoffset, which
specify, respectively, the number of bits occupied by the field and the field’s offset relative to the beginning of a tablebase
entry. offset is optional and, if not specified, will be computed using an algorithm to assignfields to empty slots,
though ifoffset is specified in one element, it must be specified in all of them.bits is usually required, except for
single-bit-only fields. The total number of bits required must be a power-of-two byte boundary, i.e, 8, 16, 32, 64. The
entities are:

dtm Distance-to-mate. Required to generate a tablebase with adtm format; otherwise useless and optional. Can be
used with any number ofbits (unlike thedtm element in the tablebaseformat, which can only have 8 or 16
bits), but a fatal error will result during tablebase propagation if this field is too small.

movecnt Required. Used to count the number of possible moves from a given position. Has four reserved values, and
must be able to count down to zero, so ann-bit movecnt allows positions with up to2n

− 5 moves. If 8-way
symmetry is in use, then many positions require their moves to be counted twice, effectively halving that number.
If positions exist with too many possible moves to fit intomovecnt, a fatal error will result during tablebase
initialization.

locking-bit Single-bit-only field. Optional, but recommended if running multi-threaded. Allows individual table-
base entries to be locked. Without it, a global lock must be used to regulate access to the entries table, which can
adversely affect performance, but probably not as much as doublingthe size of the entries table if that is the only
way to create a free bit.

Default: <entries-format>
<dtm bits="8" offset="0"/>
<movecnt bits="7" offset="9"/>
<locking-bit offset="8"/>

</entries-format>

Note: Changingentries-format requires the program to be recompiled with a differentformats.h file, which
the program will print as it terminates with a fatal error.

Example: A good example of how to use this element is found in the standardkppkp tablebase, which has a maximum
distance to mate of 128, and therefore requires a 9 bitdtm field (unfortunately, there’s no way to know this in advance).
This can be achieved within a 2-byteentries-format by stealing a bit from themovecnt field, leaving it with 6
bits for a possible26

− 5 = 59 movements. Since a king can have no more than 8 movements, and a pawn can have no
more than 12 (on the seventh rank it has two possible captures and a forward movement, times four possible pieces it can
promote into), a king and two pawns can have no more than 32 movements (less,actually, since no capture-promotions
are possible with only a pawn and a king on the opposing side), so a 6-bitmovecnt works fine. On the other hand, this
alternate format would not work on thekqqkq tablebase, since a queen can have up to 28 movements, so a king and two
queens can have around 74 movements, which gets doubled to 148 since weuse 8-way symmetry.

4.7.4 <proptable-format> ... </proptable-format>

This optional element controls the internal format used to store proptables,and is structured likeentries-format.
The possible entries here are:

dtm Exactly as specified in theformat.

PTM-wins-flag Single-bit-only field. Similar to theflag field in entries-format, but has a slightly different
interpretation (indicates ifplayer to move wins, not white). Notype attribute. Should be specified instead of a
dtm field if a bitbase is being constructed.

movecnt Similar to the same field inentries-format, but has no reserved values and doesn’t have to hold a
complete move count (only the number of moves being propagated). Currently hasno checkfor overflow!!

index-field Holds the index number being propagated. See theindex section for more information about how
index numbers are computed. Currently hasno checkfor overflow!!

futurevector Only used during the first back-propagation pass, to track which futuremoves have been handled as
futurebases are back-propagated. Must be large enough to hold a single bit for each possible futuremove from a
position. Hoffman will die (early) with a fatal error if this field is not large enough.

Default: <proptable-format>
<index bits="32" offset="0"/>
<dtm bits="16" offset="32"/>
<movecnt bits="8" offset="56"/>
<futurevector bits="64" offset="64"/>

</proptable-format>

Note: Changingproptable-format requires the program to be recompiled with a differentformats.h file, which
the program will print as it terminates with a fatal error.

4.8 <tablebase-statistics> ... </tablebase-statistics>

This element is added by the program and should not be specified in the input. It contains statistics relating to the finished
tablebase.

Element Interpretation
indices Total number of entries in the uncompressed tablebase

PNTM-mated-positions Total number of positions in whichplayer not-to-move is mated; i.e, illegal
positions in which a kind can be immediately captured

legal-positions Total number of legal positions; i.e, total number of entries, minus illegal en-
tries where two pieces occupy the same space, minus PNTM-mated positions

stalemate-positions Stalemate (not draw by repetition) positions
white-wins-positions Positions from which White can force a win
black-wins-positions Positions from which Black can force a win

forward-moves Total number of forward moves from positions in this tablebase (including
futuremoves)

futuremoves Total number of forward moves from positions in this tablebase into future-
bases or pruned

max-dtm Largestdistance to mate of all positions in this tablebase
min-dtm Smallestdistance to mate of all positions in this tablebase, i.e, a negative num-

ber indicating the longest forced loss

4.9 <generation-statistics> ... </generation-statistics>

This element is added by the program and should not be specified in the input. It contains statistics relating to the program
run that generated the tablebase.

Element Interpretation
host Hostname of system that generated the tablebase

program Name and version of the program that generated the tablebase
args Command line used for the generation run

start-time Time the program run initially started
completion-time Time the program run finally ended

user-time CPU time used by the run in user space
system-time CPU time used by the run in system calls
real-time Wall clock time used by the run
page-faults Number of times the program had to wait for a memory page to be swapped in

from disk
page-reclaims Number of times the program reclaimed a page from the free list; this will

typically be program instruction pages
proptable-writes If proptables are in use, the number of proptables written to disk

proptable-write-time If proptables are is use, the total real time required for all proptable writes
pass Per-pass statistics, includingreal-time anduser-time

5 Some Confusing Error Messages

5.1 Doubled pawns must (currently) appear in board order in piece list

Currently, doubled pawns using “plus” locations (ex:location="a2+") on the same file must have theirpiece
elements listed in the XML in the order that the pawns appear on the board, counting in algebraic notation from row 1 to
row 8. I mean, row 2 to row 7.

5.2 Piece restrictions not allowed with symmetric indices (yet)

You can’t specify anindex symmetry attribute and also specifypiece location attributes, even if the restric-
tions on the piece locations might be compatible with the requested symmetry.

5.3 Non-identical overlapping piece restrictions not allowed with this index type

For thenaive, naive2, andsimple index types, you can’t specify two identical pieces with differentlocation
restrictions unless those restrictions are completely distinct. For example, youcan’t have a free white rook and another
white rook restricted to the a-file. If you think about it, this situation would allow the rooks to “trade places” — both
could move to the a-file and then either one could move off. The simpler index types can’t handle this situation. You
could, however, have a white rook restricted to the a-file and another restricted to the d-file (or use a more sophisticated
index type, likecompact).

5.4 More than two identical pieces with overlapping move restrictions

Identical pieces (say, two white rooks) can be swapped without changing the position, and the program has to take this
into account. If there were, say, three identical pieces, we’d have to consider a more complex set of permutations, and
the program currently doesn’t do this. So, unless the pieces have non-overlapping move restrictions (i.e, they can’t be
swapped), we’re currently limited to two identical pieces, and thus can’t handle something likekpppkr.

5.5 Attempting to initialize position with a movecnt that won’t fit in field!

Themovecnt field specified ingeneration-controls wasn’t big enough, and note that the default value might
not be big enough!

5.6 Default/specified proptable/entries format incompatible with compiled-in format

Changing the formats ingeneration-controls requires recompiling the program with a different"formats.h"
file.

5.7 Futurebase doesn’t match prune-enables!

Remember that futurebaseprune-enable elements must be a subset of the current tablebase’sprune-enables.

