
Propagation Tables in Hoffman

Brent Baccala

May 23, 2008

Hoffman is a program to solve chess endgames using retrograde analysis. Retrograde analysis is
only useful in the endgame, runs very slowly, and produces enormous amounts of data. Its great
advantage lies in its ability to completely solve the endgame. In a very real sense, a retrograde
engine has no “move horizon” like a conventional chess engine. It seeseverything.

A Hoffman analysis can be quite space-intensive. Since its memory utilization pattern is basically
random, Hoffman will begin to swap dramatically and suffer a disastrous drop in performance
once its working set size exceeds the machine’s available memory. To alleviatethis, the program
can be operated in a mode where it fills a series ofpropagation tables, writes each one out to disk
when full, then reads them back in sequentially during the next pass. Although less efficient than
when the working set can be contained in memory, propagation tables allow theprogram to build
tablebases of essentially unlimited size with no swapping and reasonable CPU utilization.

Propagation tables are implemented using an in-memory bucket sort and then amerge tree (de-
scribed by Knuth in [1]) to combine the disk files. Probably the most novel aspect of the imple-
mentation (to my knowledge) is the use of inversion in a finite field to smooth the distribution of
index numbers.

The Algorithm

The basic operation of the program is to make multiple sweeps through an “entries” table, with
the processing of each entry triggering changes to other, related entries. The basic problem is that
the entries table can not fit into memory. Therefore, we store the entries tableon disk and sweep
through it sequentially. To avoid the random disk accesses that would be required by the update
operation, we maintain a sorted table (the “proptable”) in memory that contains the information
needed to perform an update. A complete proptable can not fit in memory, either, so we write
partial proptables out to disk as they fill, each to a different file. Once a pass is complete, the
output proptables become input proptables for the next pass. Each (sorted) input proptable is read
sequentially along with the entries file, the updates from all the proptables arepassed through an
in-memory merge tree, and the sorted updates are applied sequentially as we move through the
entries table, generating a new set of output proptables as we go.



Bucket Sort

The in-memory sorted table is built using a varient of bucket sort; see also Knuth’s discussion of
the address calculation sort on p. 99 of [1].

The basic idea is to start with an empty array and insert the entries into roughlythe positions they
are predicted to occupy based on their keys. The sort works best when these keys (called indices,
in our case) are evenly spread, so we invert the indices modulo a prime number in order to achieve
this even spread. This is computationally expensive, but we expect to be disk-bound anyway.

The table is initialized to all-ones (since zero may be used an as index, and “inverts” to itself).
Given an index to be inserted, we divide it by a scaling factor (the truncated integer ratio between
the number of indices and the length of the proptable) and attempt to insert at that point in the
proptable. If the slot there is empty, we insert and are done. If the slot is occupied, we compare its
entry to the new one and either merge them (if they are equal) or begin scanning in the appropriate
direction until we find either an empty slot (we use it and are done) or two adjacent entries whose
indices bracket the one we’re trying to insert.

In this case, we begin scanning simultaneously in both directions from the adjacent entries (one
slot to the left, one slot to the right, then two to the left, two to the right, etc) until we either find an
empty slot or have hit some limit on how far we may search (currently 25 slots in either direction).
If we didn’t hit the limit, we shift a block of entries one slot to move the empty slot between the
two adjacent entries originally identified and insert the new element there. Ifwe hit the limit, we
declare the table “full”, write the occupied slots out to disk by making a linear sweep through the
entire table (clearing the slots as we go), and insert the new element into the now-empty table at
its originally predicted location.

This algorithm could probably use a careful complexity analysis, specifically with regard to tuning
how it chooses when to write the table out to disk. The 25 slot limit is just a guessthat seems to
trigger at about 50-60% occupancy.

The Merge Tree

A merge tree is used when reading the proptables back in from disk. Its design was taken almost
directly from [1], §5.4.1 Multiway Merging and Replacement Selection. The key observation is
that the input files are sorted, so we can read them sequentially, and needonly a method of selecting
which of them has the next item in a global sort.

The merge tree is illustrated in Figure 1; it is implemented as an array of proptableentries with the
array indices shown (the exact size is scaled according to the number of input propfiles). The sorted
entries from the input propfiles are fed in at the left. Moving right, at eachnode a comparison is
made between the two nodes linked from the left and the lowest entry is selected and placed into
the array at that point. In the example, the first proptable is fed (one entryat a time) into the array
at index 8, and the second proptable is fed into the array at index 9. The smaller of the two entries
at array indices 8 and 9 is copied into the array at index 4, and so on.

Clearly, array index 1 will contain the lowest entry from all the inputs. It is removed and processed.



1

2

3

4

5

6

7

8

9

10

11

12

13

15

14

Figure 1: A Merge Tree

Let’s say it was originally from the first proptable (index 8). The next entry from the first proptable
now needs to be inserted at index 8 and the tree updated. Yet note first that the only updates
required are along the path from index 8 to the root at index 1. Note further that although the node
numbers have been assigned in a fairly obvious way, the index number of the node to the right of
any given node can always be computed simply by right shifting one bit.

So our update algorithm is quite simple. Along with the entries moving through the array, we also
track where they originally came from (using a parallel array). We removethe next entry to be
processed from array index 1, take the next entry from that file and insert it into the array at the
correct index on the left hand side. Then we loop on the array index, right shifting by one bit each
time around and at each step comparing entries at indices2i and2i + 1 and putting the smaller of
the two in indexi. We terminate when we’ve recomputed the value in index 1, which is the new
next element to be processed.

If we don’t have an even power of two number of input proptables, thenwe round up, and some
of the slots in the array (the gray dashed boxes in Figure 1) are initialized withan “infinite” (i.e,
all-ones) value. The algorithm then proceeds normally. Likewise, as inputis exhausted from
individual files, we insert all-ones values into the corresponding arrayentries. Once an all-ones
value appears at node 1, we have processed all the available input.

References

[1] Knuth, Art of Computer Programming, Vol 3, 2nd Ed.

[2] http://en.wikipedia.org/wiki/Bucket sort


